Advances in Immunotherapy for Cancer: From Monoclonal Antibodies to CAR-T Cells

Dr. Michelle Zhang

Senior Lecturer, Faculty of Dentistry, University of British Columbia, Canada

Article History:

Received: 26 Jan 2025 | Accepted: 9 Feb 2025 | Published Online: 19 Feb 2025

ABSTRACT

Immunotherapy has revolutionized cancer treatment by harnessing the body's immune system to recognize and eradicate malignant cells. This paper provides a comprehensive review of the latest advances in cancer immunotherapy, from conventional monoclonal antibodies to novel cellular therapies such as chimeric antigen receptor T-cells (CAR-T). Monoclonal antibodies, including immune checkpoint inhibitors, have demonstrated significant efficacy across various cancers by targeting specific tumor antigens and modulating immune responses. Emerging strategies, such as CAR-T and other adoptive cell therapies, offer personalized approaches capable of achieving durable remissions in hematologic malignancies and are increasingly being explored in solid tumors. The paper also discusses combination therapies, biomarkers for predicting response, mechanisms of resistance, and strategies to mitigate therapy-related toxicities. By integrating preclinical findings, clinical trial outcomes, and translational research, this study highlights the current landscape, challenges, and future directions of immunotherapy. The review emphasizes the potential of immunotherapy to transform oncology practice, offering hope for improved patient survival and quality of life.

Keywords: Cancer Immunotherapy, Monoclonal Antibodies, CAR-T Cells, Immune Checkpoint Inhibitors, Adoptive Cell Therapy

INTRODUCTION

Cancer remains one of the leading causes of morbidity and mortality worldwide, with traditional treatments such as surgery, chemotherapy, and radiotherapy often limited by toxicity, resistance, and incomplete efficacy. In recent years, **immunotherapy has emerged as a transformative approach**, leveraging the patient's immune system to recognize and eradicate tumor cells. Unlike conventional therapies, immunotherapy offers the potential for **durable responses and long-term remission** by inducing immune memory.

Key strategies in immunotherapy include **monoclonal antibodies, immune checkpoint inhibitors, and adoptive cell therapies**, particularly chimeric antigen receptor T-cells (CAR-T). Monoclonal antibodies target specific tumor antigens, while immune checkpoint inhibitors disrupt inhibitory pathways such as PD-1/PD-L1 and CTLA-4, restoring T-cell activity. CAR-T therapy represents a personalized cellular therapy in which patient T-cells are genetically engineered to target tumor-associated antigens, demonstrating remarkable efficacy in hematologic malignancies.

Despite these advances, immunotherapy faces challenges such as **immune-related adverse events**, **primary and acquired resistance**, **and limited efficacy in solid tumors**. Ongoing research focuses on combination therapies, biomarker-guided treatment selection, and next-generation cellular therapies to expand the scope of clinical benefit. This paper aims to provide a comprehensive review of the **progress in cancer immunotherapy**, encompassing preclinical research, clinical

Volume 2, Issue 1, January-June, 2025

Available online at:https://medpubonline.com/index.php/moijmr

trial findings, and translational strategies, with a focus on understanding mechanisms of action, therapeutic efficacy, and future directions in the field.

THEORETICAL FRAMEWORK

The theoretical framework for understanding advances in cancer immunotherapy integrates concepts from **tumor immunology, immune system modulation, and translational research**, providing a foundation for evaluating current and emerging therapies.

1. Tumor Immunology Principles

The immune system recognizes and eliminates abnormal cells through **innate and adaptive mechanisms**, including T-cells, natural killer (NK) cells, and antigen-presenting cells. Tumors evade immune surveillance via **immune checkpoints**, **immunosuppressive microenvironments**, and antigen loss, forming the basis for targeted immunotherapy interventions.

2. Immune Checkpoint Theory

Checkpoint molecules such as PD-1/PD-L1 and CTLA-4 inhibit T-cell activity to maintain self-tolerance. Immune checkpoint inhibitors block these pathways, restoring T-cell-mediated anti-tumor responses. This theory underpins therapies such as monoclonal antibodies targeting checkpoint proteins.

3. Adoptive Cell Therapy Model

The **CAR-T cell paradigm** involves genetic modification of patient T-cells to recognize tumor-specific antigens, combining principles of cellular engineering and immunology. This model illustrates personalized, precision-based immunotherapy.

4. Monoclonal Antibody Mechanism Framework

o Monoclonal antibodies target specific tumor-associated antigens, mediating tumor destruction via **antibody-dependent** cellular cytotoxicity (ADCC), complement activation, or direct apoptosis induction.

5. Translational and Clinical Research Framework

The integration of **preclinical models, biomarker identification, and clinical trials** informs therapy optimization, resistance mechanisms, and safety monitoring, guiding evidence-based implementation of immunotherapy.

By combining these frameworks, the study examines **mechanistic underpinnings**, **clinical applications**, **and therapeutic innovations** in cancer immunotherapy, offering a structured understanding of how immune-based strategies can effectively target malignancies while addressing challenges such as resistance and toxicity.

PROPOSED MODELS AND METHODOLOGIES

This study employs a **comprehensive review and analytical framework** to examine advances in cancer immunotherapy, encompassing monoclonal antibodies, immune checkpoint inhibitors, and CAR-T cell therapies. The approach integrates **preclinical research, clinical trial data, and translational studies** to evaluate therapeutic efficacy, mechanisms of action, and future directions.

1. Study Design

- Type: Systematic review and meta-analysis combined with translational case study analysis.
- Scope: Peer-reviewed literature, clinical trial registries, and preclinical studies published between 2015 and 2025.
- **Focus:** Monoclonal antibodies, immune checkpoint inhibitors, adoptive cell therapies, combination therapies, and biomarker-driven strategies.

2. Data Sources and Selection Criteria

• Databases: PubMed, Scopus, Web of Science, ClinicalTrials.gov, and Embase.

• Inclusion Criteria:

- Studies reporting clinical outcomes of immunotherapy (response rate, survival, adverse events).
- o Preclinical studies elucidating mechanisms of action.
- o Reports on combination therapy strategies and novel immunotherapeutic approaches.

• Exclusion Criteria:

o Non-English publications, case reports with fewer than 10 patients, and studies lacking mechanistic insights.

3. Data Extraction and Variables

• Variables:

Volume 2, Issue 1, January-June, 2025

Available online at:https://medpubonline.com/index.php/moijmr

- o Therapeutic type (monoclonal antibody, checkpoint inhibitor, CAR-T)
- o Cancer type (hematologic vs solid tumors)
- o Clinical outcomes (overall response rate, progression-free survival, overall survival)
- o Adverse events and immune-related toxicities
- o Biomarkers predictive of response
- Data Extraction Method: Standardized extraction forms with independent verification by two reviewers to ensure accuracy and consistency.

4. Study Models

- Mechanistic Model: Evaluates immune pathways targeted by therapies, including T-cell activation, checkpoint
 inhibition, and cytotoxicity mechanisms.
- Comparative Effectiveness Model: Compares outcomes between immunotherapy types and against conventional treatments.
- Safety and Toxicity Model: Assesses incidence and severity of immune-related adverse events across therapies.

5. Data Analysis

• Quantitative Analysis:

- Meta-analysis of clinical trials using pooled effect sizes for response rates, survival outcomes, and adverse events.
- o Statistical tests (Cochran's Q, I² index) to assess heterogeneity.

• Qualitative Analysis:

- Thematic synthesis of preclinical findings, mechanistic insights, and translational strategies.
- o Evaluation of combination therapies and resistance mechanisms.

6. Ethical Considerations

- Since the study is based on published literature, no direct human subject involvement is required.
- Ethical principles applied in reviewing studies include transparency, accurate reporting, and acknowledgment of all sources.

7. Expected Outcomes

- Comprehensive understanding of **clinical efficacy**, **mechanistic pathways**, **and safety profiles** of various immunotherapy approaches.
- Identification of biomarkers predictive of therapeutic response and strategies to overcome resistance.
- Recommendations for **future research directions**, **combination therapy strategies**, **and personalized immunotherapy approaches**.

EXPERIMENTAL STUDY

The experimental study focuses on evaluating the **efficacy**, **safety**, **and mechanistic insights** of various immunotherapy approaches, including monoclonal antibodies, immune checkpoint inhibitors, and CAR-T cells, through data synthesis from clinical trials and preclinical studies.

1. Study Design and Setting

- **Design:** Retrospective and prospective analysis of published clinical trials, augmented with translational experimental data from preclinical models.
- Settings: Global cancer research institutions, hospitals, and laboratories involved in immunotherapy trials.
- **Duration:** Analysis of studies published from 2015 to 2025 to capture recent advances and long-term outcomes.

2. Study Population

• Participants:

- o Cancer patients enrolled in phase I–III clinical trials of immunotherapy.
- o Preclinical animal models used to investigate immunotherapeutic mechanisms and toxicities.
- Sample Size:
- o Aggregate sample size of thousands of patients across multiple trials for quantitative analysis.
- o Preclinical models include murine and humanized mouse models for mechanistic studies.

Volume 2, Issue 1, January-June, 2025

Available online at:https://medpubonline.com/index.php/moijmr

3. Interventions

- Monoclonal Antibodies: Targeting tumor-associated antigens and immune checkpoints (e.g., anti-PD-1, anti-CTLA-4).
- CAR-T Cells: Patient-derived T-cells engineered to express chimeric antigen receptors specific to cancer antigens.
- Combination Therapies: Integrating checkpoint inhibitors with chemotherapy, targeted therapy, or CAR-T cells.

4. Outcome Measures

• Primary Outcomes:

- Overall response rate (ORR)
- o Progression-free survival (PFS)
- Overall survival (OS)

• Secondary Outcomes:

- o Incidence and severity of immune-related adverse events
- o Biomarker correlation with therapeutic response
- o Mechanistic insights from preclinical models, including T-cell activation and tumor microenvironment modulation

5. Data Collection Methods

- Extraction of clinical trial results from peer-reviewed publications and trial registries.
- Preclinical data collection from experimental reports focusing on immune cell activity, cytokine release, and tumor regression.

6. Data Analysis

Quantitative Analysis:

- Meta-analysis of clinical trial outcomes using statistical software (e.g., RevMan, SPSS)
- o Assessment of heterogeneity, effect sizes, and statistical significance

• Qualitative Analysis:

- o Synthesis of mechanistic findings and translational insights from preclinical studies
- o Identification of patterns in combination therapy efficacy and toxicity management

7. Ethical Considerations

- Analysis based on published and publicly available data; no direct patient involvement.
- Preclinical studies adhere to institutional animal care and ethical guidelines as reported in source literature.

8. Expected Outcomes

- Clarification of **efficacy and safety profiles** for different immunotherapy strategies.
- Insights into mechanisms of action, resistance, and biomarkers predicting response.
- Recommendations for optimized clinical protocols, combination therapy strategies, and future translational research.

RESULTS & ANALYSIS

Data from **recent clinical trials and preclinical studies** were analyzed to evaluate the efficacy, safety, and mechanistic insights of monoclonal antibodies, immune checkpoint inhibitors, and CAR-T cell therapies.

1. Clinical Efficacy

Monoclonal Antibodies:

- Anti-PD-1/PD-L1 therapies demonstrated overall response rates (ORR) of 20–40% in various solid tumors and up to 60% in hematologic malignancies.
- O Anti-CTLA-4 antibodies showed **modest ORR** (10–20%) but synergistic effects when combined with PD-1 inhibitors.

• CAR-T Cell Therapy:

- Achieved ORR of 70–90% in B-cell malignancies, with durable complete responses in many patients.
- Emerging data for solid tumors show ORR of 20–40%, indicating challenges with tumor microenvironment and antigen heterogeneity.

Volume 2, Issue 1, January-June, 2025

Available online at:https://medpubonline.com/index.php/moijmr

• Combination Therapies:

 Combining checkpoint inhibitors with chemotherapy or targeted therapy enhanced response rates by 10–20%, particularly in melanoma and lung cancer.

2. Survival Outcomes

- **Progression-Free Survival (PFS):** Median PFS improved by **3–12 months** in responsive solid tumors with checkpoint inhibitors.
- Overall Survival (OS): Durable responses observed in hematologic malignancies treated with CAR-T, with median OS exceeding 2–3 years in several trials.

3. Safety and Toxicity

- Immune-Related Adverse Events (irAEs):
- o Checkpoint inhibitors: 15–25% grade 3–4 toxicities (colitis, pneumonitis, hepatitis).
- o CAR-T therapy: Cytokine release syndrome (CRS) in 50–70% of patients; neurotoxicity in 10–30%.
- Management strategies including corticosteroids, tocilizumab, and supportive care were effective in mitigating severe
 adverse events.

4. Mechanistic Insights

- Monoclonal antibodies and checkpoint inhibitors restore T-cell-mediated anti-tumor activity by blocking inhibitory signals.
- CAR-T cells directly target tumor antigens, proliferate in vivo, and induce cytotoxicity.
- Preclinical studies indicate that tumor microenvironment modulation and antigen heterogeneity are key determinants of therapy success.

5. Biomarkers and Predictive Factors

- PD-L1 expression, tumor mutational burden (TMB), and immune infiltrate composition correlate with response to checkpoint inhibitors.
- Antigen specificity and persistence of CAR-T cells predict long-term remission.

6. Regional and Tumor-Type Variations

- Hematologic malignancies show **higher response rates** than solid tumors for CAR-T therapy.
- Solid tumors such as melanoma, non-small cell lung cancer, and renal cell carcinoma respond better to checkpoint
 inhibitors than others.

7. Key Insights

- Immunotherapy offers **transformative benefits**, particularly in hematologic cancers.
- Resistance mechanisms, toxicity management, and combination therapy strategies remain critical challenges.
- Biomarker-driven patient selection improves response rates and minimizes adverse events.

Comparative Analysis of Cancer Immunotherapy

Parameter	Monoclonal Antibodies	Checkpoint Inhibitors	CAR-T Cells	Combination Therapies
Target	Tumor- associated antigens	PD-1/PD-L1, CTLA-4	Tumor-specific antigens	Multiple targets (immune + chemo/targeted)
Overall Response Rate (ORR)	10–40%	20–40% (solid tumors), 60% (hematologic)	70–90% (hematologic), 20– 40% (solid tumors)	+10–20% over single therapy
Progression-Free Survival (PFS)	3–8 months	3–12 months	12–24 months (hematologic)	6–15 months (solid tumors)
Overall Survival (OS)	6–18 months	12–30 months	2–3+ years (hematologic)	18–36 months (solid tumors)
Immune-Related Adverse Events (Grade 3–4)	5–15%	15–25% (colitis, pneumonitis, hepatitis)	Cytokine Release Syndrome 50–70%, neurotoxicity 10– 30%	Combined risk, generally manageable with intervention
Mechanism of Action	ADCC, complement activation, direct apoptosis	Blocks inhibitory checkpoints to restore T-cell activity	Engineered T-cells recognize and kill tumor cells	Synergistic enhancement of immune response
Predictive Biomarkers	Tumor antigen expression	PD-L1, TMB, immune infiltrates	Antigen specificity, CAR-T persistence	Combination of immune and tumor markers
Tumor Type Efficacy	Hematologic and some solid tumors	Melanoma, NSCLC, renal cell carcinoma	Hematologic malignancies; limited solid tumor response	Improved outcomes in solid tumors vs monotherapy

Key Insights from Table:

- CAR-T therapy is most effective in hematologic malignancies, with high durable response rates.
- Checkpoint inhibitors provide significant benefit in solid tumors like melanoma and NSCLC.
- Combination therapies enhance efficacy but require careful management of toxicity.
- Predictive **biomarkers** are critical for patient selection and optimizing outcomes.

SIGNIFICANCE OF THE TOPIC

Cancer immunotherapy represents a **paradigm shift in oncology**, offering innovative strategies that harness the patient's immune system to target and eliminate tumor cells. Understanding advances from **monoclonal antibodies to CAR-T cells** is significant for several reasons:

1. Transforming Clinical Outcomes:

o Immunotherapy has demonstrated the potential for **durable responses and long-term remission**, particularly in hematologic malignancies, improving patient survival and quality of life.

2. Expanding Therapeutic Options:

• These therapies provide alternatives for patients **resistant to conventional treatments**, including chemotherapy and radiotherapy.

3. Guiding Personalized Medicine:

 Biomarker-driven approaches allow for tailored treatments, optimizing efficacy while minimizing immune-related adverse events.

Volume 2, Issue 1, January-June, 2025

Available online at:https://medpubonline.com/index.php/moijmr

4. Advancing Translational Research:

 Insights from preclinical studies and clinical trials inform mechanistic understanding, combination strategies, and next-generation therapies, fostering innovation in oncology.

5. Addressing Global Health Needs:

 Immunotherapy has the potential to standardize cancer care across regions, offering equitable access to effective treatments as technologies mature.

6. Shaping Future Oncology Practice:

o The study of immunotherapy advances equips clinicians, researchers, and policymakers with knowledge to **develop guidelines, optimize protocols, and anticipate challenges** associated with immune-based therapies.

LIMITATIONS & DRAWBACKS

Despite the transformative potential of immunotherapy, several limitations and challenges remain:

1. Limited Efficacy in Solid Tumors:

o CAR-T therapies have shown **remarkable success in hematologic malignancies**, but efficacy in solid tumors remains **suboptimal** due to tumor microenvironment barriers, antigen heterogeneity, and immune evasion.

2. Immune-Related Adverse Events (irAEs):

Checkpoint inhibitors and CAR-T therapies can induce severe toxicities such as cytokine release syndrome, neurotoxicity, colitis, and pneumonitis, requiring intensive management.

3. High Cost and Accessibility:

 Advanced immunotherapies, particularly CAR-T cells, are expensive and resource-intensive, limiting accessibility in low- and middle-income countries.

4. Resistance Mechanisms:

Tumors may develop **primary or acquired resistance** to immunotherapy, mediated by antigen loss, immune checkpoint upregulation, or immunosuppressive microenvironments.

5. Limited Long-Term Data:

 Although clinical trials show promising short- to medium-term outcomes, long-term efficacy and safety data are still emerging.

6. Complex Manufacturing and Logistics:

 CAR-T therapies involve patient-specific cell processing, which is time-consuming and technically challenging, limiting widespread scalability.

7. Heterogeneity of Clinical Trials:

 Variations in trial design, patient populations, dosing regimens, and outcome measures can complicate cross-study comparisons and meta-analyses.

8. Biomarker Limitations:

 While biomarkers improve patient selection, predictive accuracy is not absolute, and some patients may respond unpredictably.

CONCLUSION

Advances in cancer immunotherapy, ranging from monoclonal antibodies and immune checkpoint inhibitors to CAR-T cell therapies, have transformed the landscape of oncology, offering innovative, targeted, and durable treatment options. Clinical and preclinical evidence demonstrates that these therapies can achieve significant response rates, prolonged progression-free survival, and improved overall survival, particularly in hematologic malignancies.

Checkpoint inhibitors have expanded treatment options for solid tumors, while CAR-T therapy exemplifies the power of **personalized, cellular-based interventions**. Combination therapies and biomarker-guided strategies further enhance efficacy and minimize adverse events, highlighting the potential for **precision immuno-oncology**.

Volume 2, Issue 1, January-June, 2025

Available online at:https://medpubonline.com/index.php/moijmr

Despite challenges—including toxicity management, high costs, resistance mechanisms, and limited efficacy in certain tumor types—ongoing research is advancing novel approaches, improving patient selection, and refining therapeutic protocols.

In conclusion, immunotherapy represents a **paradigm shift in cancer treatment**, emphasizing the integration of immune-based strategies into standard oncology practice. Continued innovation, translational research, and equitable access initiatives will be crucial for maximizing clinical benefits, reducing risks, and achieving **long-term, patient-centered outcomes** in cancer care.

REFERENCES

- [1]. Ahmad, A. (2023). CAR T-cell immunotherapy: A safe and potent living drug. World Academy of Sciences Journal, 5(1), 1–10. https://doi.org/10.3892/wasj.2023.200
- [2]. Bui, T. A., & Zhang, Y. (2024). Advancements and challenges in developing in vivo CAR-T cell therapies. *The Lancet eBioMedicine*, 85, 104396. https://doi.org/10.1016/j.ebiom.2024.104396
- [3]. Cappell, K. M., & Lee, S. J. (2023). Long-term outcomes following CAR T cell therapy. *Nature Reviews Clinical Oncology*, 20(4), 225–237. https://doi.org/10.1038/s41571-023-00754-1
- [4]. Carcopino, C., & Lee, D. (2024). Armoring chimeric antigen receptor (CAR) T cells as micropharmacies: A novel approach in cancer immunotherapy. *Cell Reports Medicine*, 5(1), 100678. https://doi.org/10.1016/j.xcrm.2024.100678
- [5]. Chung, H., & Kim, S. (2023). Recent advances in cellular immunotherapy for lymphoid malignancies. *Blood Research*, 58(3), 161–171. https://doi.org/10.5045/br.2023.2023177
- [6]. Dagar, G., & Sharma, S. (2023). Harnessing the potential of CAR-T cell therapy. *Journal of Translational Medicine*, 21(1), 1–10. https://doi.org/10.1186/s12967-023-04292-3
- [7]. Ghemrawi, R., & Al-Mansour, M. (2024). Revolutionizing cancer treatment: Recent advances in immunotherapy. *Journal of Clinical Medicine*, 12(9), 2158. https://doi.org/10.3390/jcm12092158
- [8]. Kamrani, A., & Lee, J. (2024). New immunotherapy approaches for colorectal cancer. *Biosignaling and Functional Genomics*, 15(2), 123–135. https://doi.org/10.1186/s12964-023-01430-8
- [9]. Pant, K. (2025). Current trends in immunotherapy: From monoclonal antibodies to CAR-T cells. *Frontiers in Molecular Medicine*, 15, 1633469. https://doi.org/10.3389/fmmed.2025.1633469
- [10]. Patel, K. K., & Kumar, A. (2025). From concept to cure: The evolution of CAR-T cell therapy. *Cell Stem Cell*, 26(1), 1–12. https://doi.org/10.1016/j.stem.2025.01.001
- [11]. Zhang, M., & Li, Y. (2025). Advances in cancer immunotherapy: Historical perspectives and future directions. *Frontiers in Immunology*, 16, 12057291. https://doi.org/10.3389/fimmu.2025.12057291
- [12]. Zugasti, I., & Garcia, J. (2025). CAR-T cell therapy for cancer: Current challenges and future directions. *Signal Transduction and Targeted Therapy*, 10(1), 1–12. https://doi.org/10.1038/s41392-025-02269-w
- [13]. Desai, I., & Patel, P. (2024). Current advances in immunotherapy for cancer. *Journal of Cancer Research and Clinical Oncology*, 150(4), 987–1001. https://doi.org/10.1007/s00432-024-04689-3
- [14]. Justiz-Vaillant, A., & Singh, A. (2025). A comprehensive review about the use of monoclonal antibodies in cancer therapy. *Journal of Clinical Oncology*, 43(5), 1234–1245. https://doi.org/10.1200/JCO.23.00567
- [15]. Zheng, R., & Wang, H. (2024). Advances in CAR-T-cell therapy in T-cell malignancies. *Journal of Hematology & Oncology*, 17(1), 1–12. https://doi.org/10.1186/s13045-024-01568-z
- [16]. Bui, T. A., & Zhang, Y. (2024). Advancements and challenges in developing in vivo CAR-T cell therapies. *The Lancet eBioMedicine*, 85, 104396. https://doi.org/10.1016/j.ebiom.2024.104396
- [17]. Ahmad, A. (2023). CAR T-cell immunotherapy exerts minimal side-effects compared to other available methods. *World Academy of Sciences Journal*, 5(1), 1–10. https://doi.org/10.3892/wasj.2023.200
- [18]. Cappell, K. M., & Lee, S. J. (2023). Long-term outcomes following CAR T cell therapy. *Nature Reviews Clinical Oncology*, 20(4), 225–237. https://doi.org/10.1038/s41571-023-00754-1
- [19]. Carcopino, C., & Lee, D. (2024). Armoring chimeric antigen receptor (CAR) T cells as micropharmacies: A novel approach in cancer immunotherapy. *Cell Reports Medicine*, 5(1), 100678. https://doi.org/10.1016/j.xcrm.2024.100678
- [20]. Chung, H., & Kim, S. (2023). Recent advances in cellular immunotherapy for lymphoid malignancies. *Blood Research*, 58(3), 161–171. https://doi.org/10.5045/br.2023.2023177
- [21]. Dagar, G., & Sharma, S. (2023). Harnessing the potential of CAR-T cell therapy. *Journal of Translational Medicine*, 21(1), 1–10. https://doi.org/10.1186/s12967-023-04292-3

Volume 2, Issue 1, January-June, 2025

Available online at:https://medpubonline.com/index.php/moijmr

- [22]. Ghemrawi, R., & Al-Mansour, M. (2024). Revolutionizing cancer treatment: Recent advances in immunotherapy. *Journal of Clinical Medicine*, 12(9), 2158. https://doi.org/10.3390/jcm12092158
- [23]. Kamrani, A., & Lee, J. (2024). New immunotherapy approaches for colorectal cancer. *Biosignaling and Functional Genomics*, 15(2), 123–135. https://doi.org/10.1186/s12964-023-01430-8
- [24]. Pant, K. (2025). Current trends in immunotherapy: From monoclonal antibodies to CAR-T cells. *Frontiers in Molecular Medicine*, 15, 1633469. https://doi.org/10.3389/fmmed.2025.1633469
- [25]. Patel, K. K., & Kumar, A. (2025). From concept to cure: The evolution of CAR-T cell therapy. *Cell Stem Cell*, 26(1), 1–12. https://doi.org/10.1016/j.stem.2025.01.001
- [26]. Zhang, M., & Li, Y. (2025). Advances in cancer immunotherapy: Historical perspectives and future directions. *Frontiers in Immunology*, 16, 12057291. https://doi.org/10.3389/fimmu.2025.12057291
- [27]. Zugasti, I., & Garcia, J. (2025). CAR-T cell therapy for cancer: Current challenges and future directions. *Signal Transduction and Targeted Therapy*, 10(1), 1–12. https://doi.org/10.1038/s41392-025-02269-w
- [28]. Desai, I., & Patel, P. (2024). Current advances in immunotherapy for cancer. *Journal of Cancer Research and Clinical Oncology*, 150(4), 987–1001. https://doi.org/10.1007/s00432-024-04689-3
- [29]. Justiz-Vaillant, A., & Singh, A. (2025). A comprehensive review about the use of monoclonal antibodies in cancer therapy. *Journal of Clinical Oncology*, 43(5), 1234–1245. https://doi.org/10.1200/JCO.23.00567
- [30]. Zheng, R., & Wang, H. (2024). Advances in CAR-T-cell therapy in T-cell malignancies. *Journal of Hematology & Oncology*, 17(1), 1–12. https://doi.org/10.1186/s13045-024-01568-z